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Introduction 

The issue of online hate speech has been one of great interest in the past five years. While many 

approaches have been developed in recent years, the problem of automated detection of hate 

speech and offensive speech in online media is a complex one. First of all, the elements of 

complexity derive from multiple definitions produced by international bodies, different national 

legislations and different digital platforms. Secondly, hate-speech identification/classification 

sometimes proves to be a difficult task even for human agents (expert or non-expert) due to 

various cultural codes employed in different communication contexts (either national-linguistic 

or platform/community specific). Furthermore, as online communicators use various codes and 

combinations of codes (verbal – such as slang, nonverbal – such as images or emoticons, and 

paraverbal signifiers – such as capitalization, punctuation) text classification approaches that are 

mostly successful for other use cases yield poorer results for hate speech detection. Thirdly, 

tweets, social media and blog/news media comments tend to be informal and noisy sources 

which introduces another level of complexity – text processing for this particular case needs to 

keep into account various spellings (or misspellings), combinations of verbal, nonverbal and 

paraverbal signifiers (words, emoticons, punctuation/capitalization signifying 

tone/stance/emotionality). Linguistic diversity and features such as sarcasm or humor, cultural 

context, subversive tactics employed by users/commenters in online systems or difficulty arising 

from potential misclassification against users’ freedom of expression are key factors to consider 

when designing automated online hate speech detection solutions. 

This report provides an overview of key aspects of online hate speech detection and state-of-the-

art tools and resources used in automated approaches to hate-speech detection. 

 

Key concepts and definitions 

A 2015 UNESCO study (Gagliardone et al. 2015) identifies definition, jurisdiction, comprehension 

and intervention as the key issues relevant to countering online hate speech. International Law 

Documents such as the Universal Declaration of Human Rights, International Covenant on Civil 

and Political Rights, European Convention of Human Rights, American Convention of Human 

Rights and the African Charter on Human and Peoples’ Rights provide stipulations on freedom of 

expression, including freedom to seek, receive and impart information and ideas of all kinds, 

regardless of frontier or medium of expression. However, some limitations are imposed with 

respect to the issue of hate speech (either explicitly mentioned as such or not). 
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For example: 

 

Any advocacy of national, racial or religious hatred that constitutes incitement to  

discrimination, hostility or violence shall be prohibited by law.  

International Covenant on Civil and Political Rights, Article 20(2) 

 

Any propaganda for war and any advocacy of national, racial, or religious hatred that constitute 

incitements to lawless violence or to any other similar action against any person or group of 

persons on any grounds including those of race, color, religion, language, or national origin shall 

be considered as offenses punishable by law. 

American Convention of Human Rights, Article 13(5) 

Definitions 

Recent and growing international pressure on digital platforms to tackle the issue of hate speech 

has driven efforts to better define what platforms through their community standards define as 

hate speech. 

In April 2018, Facebook publishes their definition with respect to ‘protected characteristics’: 

We define hate speech as a direct attack on people based on what we call protected 

characteristics — race, ethnicity, national origin, religious affiliation, sexual orientation, caste, 

sex, gender, gender identity, and serious disease or disability. We also provide some protections 

for immigration status. We define attack as violent or dehumanizing speech, statements of 

inferiority, or calls for exclusion or segregation. 

Tier 1 attacks, which target a person or group of people who share one of the above-
listed characteristics or immigration status […] 
Tier 2 attacks, which target a person or group of people who share any of the above-
listed characteristics […] 
Tier 3 attacks, which are calls to exclude or segregate a person or group of people based 
on the above-listed characteristics […]. We do allow criticism of immigration policies and 
arguments for restricting those policies. 
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Content that describes or negatively targets people with slurs, where slurs are defined 
as words commonly used as insulting labels for the above-listed characteristics. 

Facebook Community Standards 

Facebook’s definition was last updated in December 2019 and it explicitly includes violent speech 

in written or visual form, dehumanizing speech or imagery in the form of comparisons, 

generalizations, or unqualified behavioral statements to insects, animals, filth, bacteria, different 

types of criminals, statements of inferiority based on physical deficiency, mental deficiency, 

moral deficiency, expressions of disgust, cursing etc. This definition may serve as a good starting 

point for lexicon-based approaches as it is useful in defining categories of targets, but also 

categories of features of hate speech to be detected. 

In June 2019, YouTube also announced some changes to their hate speech policies as follows: 

Hate speech is not allowed on YouTube. We remove content promoting violence or hatred 
against individuals or groups based on any of the following attributes: 

● Age 
● Caste 
● Disability 
● Ethnicity 
● Gender Identity and Expression 
● Nationality 
● Race 
● Immigration Status 
● Religion 
● Sex/Gender 
● Sexual Orientation 
● Victims of a major violent event and their kin 
● Veteran Status 

YouTube Help 

The definitions employed by digital platforms such as Facebook or YouTube have the advantage 

of stemming from large numbers of real-world examples, covering different scenarios and being 

constantly updated. However, most of them rely on and are applicable to a human understanding 

of hate speech. 

https://www.facebook.com/communitystandards/hate_speech
https://support.google.com/youtube/answer/2801939
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Levels of analysis 

In communication research, the key elements of hate speech analysis are the following: 

● Content (what is being said?) 

● Emitters (who is saying it?) 

● Targets (who is it being said about?) 

● Context (where is it being said?) 

Although most approaches focus on content classification, recent scholarship shows a trend in 

bot digital social science and computer science approaches to use targets and context (Meza, 

Vincze, and Mogos 2018)  or emitters and context (Pereira-Kohatsu et al. 2019) to improve on 

detection and classification approaches that are solely content-based. 

Hate speech, offensive speech, dangerous speech 

The issue of detecting hate speech is delicate due to the multiple definitions and their 

applicability in different contexts. Antagonistic or uncivil speech includes many subcategories and 

various degrees, not all of them included in the definitions of hate speech. Some expressions may 

be considered to be offensive, without being hate speech. Distinctions between categories such 

as hate speech, offensive speech and dangerous speech (used in the scientific or legal 

publications on the subject) may be subtle and contextual as it relies on judging the intent of the 

speaker, the reaction of the hearer/reader or the potential of the speech to lead to real-world 

acts of discrimination, exclusion or violence. Such attributes are very difficult to assess even by 

human coders in the case of online hate speech as the intent of unknown speakers (with little or 

no context provided) may be hard to make out, the reaction of the readers (whether or not they 

are likely to be offended by the language/expressions used) may depend on individual 

characteristics, and finally potential real world actions as effects may depend on the speakers’ 

positioning, status or power in a context/community where the statements are made as well as 

the characteristics of the context/community. 
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Overview of methods and approaches 

Taxonomies of hate speech have emerged in the past few years with the goal of providing coding 

guidelines for human coders to provide examples in annotated datasets, but also breaking down 

the identification and classification task based on lexical features. 

As mentioned in the introduction, the task of classifying abusive language is a difficult one due 

to several reasons as outlined in (Nobata et al. 2016): 

● It’s not keyword spotting: users obfuscate words/phrases that may trigger automated 

filters, use of just keywords can lead to many false positives. 

● It’s difficult to track racial and minority insults as blacklists or filters are or should be 

continuously updated to reflect socio-cultural or political changes, stereotypes or slang. 

● Abusive language may even be very fluent and grammatically correct, not just noisy or 

misspelled. 

● Abusive statements may cross sentence boundaries; although the meaning of individual 

sentences in a comment may not be offensive or hateful, its overall meaning may be. 

● Detecting sarcasm requires knowledge of the context/community, its codes or even the 

individual emitters in an online context 

Content classification 

Hate speech detection approaches using natural language processing techniques relies on using 

different features as in most classification-related tasks. Schmidt and Wiegand provide an 

overview of most approaches divided into several categories (Schmidt and Wiegand 2017): 

Surface features 
Unigram and larger n-grams are most often used as predictive features. Some approaches 

consider character n-gram features as they seem to be more predictive than token n-grams 

(character level approaches deal better with capturing the similarity between spelling alternates). 

Other surface features considered are – URL mentions, punctuation, comment or token length, 

capitalization, non-alphanumeric characters, words not found in dictionaries. 
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Word generalization 
Approaches vary from Latent Dirichlet Allocation (LDA) methods that produce a topic distribution 

for each word to the word embeddings approach. Vector representations may indicate words 

that have similar meaning and be used as classification features. Paragraph or comment 

embedding methods have been shown to be more effective in the case of hate speech detection. 

Sentiment Analysis 
Hate speech and sentiment analysis are related problems and some solutions to hate speech 

detections include sentiment analysis / polarity classification as part of a multi-step process. High 

negative polarity may be used in conjunction with other feature-based classification or with 

target identification. 

Lexicon-based approaches 
Approaches based on lexical resources are very popular in hate speech analysis solutions. 

Especially for the English language, there are several dictionaries (slurs, insults, swear words) 

available on the web. Some approaches also involve using /applying weights to ‘bad words’.  

However, research finds that lexicon-based approaches are insufficient as stand-alone features 

as some studies have shown that almost half of texts that contain ‘bad words’ are not in fact hate 

speech. 

Linguistic features 
Some approaches have used n-gram features combined with linguistic features. Linguistic 

features such as POS (part of speech) tags may be used as generic tools or specifically tailored to 

the problem. However, they are not shown to significantly improve hate speech detection. 

Syntactic dependency analysis or co-occurrence are however used to detect relations between 

tokens representing targets of hate speech and negative/offensive/hateful attributes associated.  

Knowledge-based approaches 
Very few approaches employ automatic reasoning based on existing ontologies (augmented with 
concepts and relationships to suit the particular task of detecting hate speech). The main reason 
is that existing ontologies should be augmented/adapted to suit the needs of different types of 
hate speech scenarios (different targets, different/complex negative stereotypes in different 
communities/cultures). 
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Targets Identification 
Target-based approaches use lexicons of words designating groups or categories of persons 

usually coupled with detection of violent, offensive or dehumanizing language. Target lexicons 

may be based on previous research on vulnerable groups in a specific national-linguistic context, 

NER tagging for groups/persons, or based on word embedding approaches. 

For example, in (Salminen et al. 2018) a hate target taxonomy is defined in conjunction with hate 

language to yield a total of 29 main and sub-categories and an additional neutral category (in 

order not to generate pro-annotation bias). The categories described by Salminen et al. included 

below are defined in the context of comments to online media. 

Language Category Description 

Accusation Accusing someone of something, without relevant evidence to support it. 

Accusations of lies, treason, all types of felonies, etc. 

Promoting Violence Calling people to deal with something using violence, asking for murders; 

threatening human life. 

Humiliation Using words like: idiot, retard, stupid, dumb, trying to degrade someone. 

Swearing Filthy language, bad words, swearing, non-polit 

 
Main Target Category Description 

Financial Power (Subcategories: 

Corporation, Wealthy) 

Hatred toward wealthy people and companies and their privileges. Pointing out 

their intentions to manipulate and commit crimes 

Political Issues (Subcategories: 

Terrorism, Politics, Ideology) 

Hate toward government, political parties and movements, war, terrorism, the 

flaws of the system. 

Racism & Xenophobia (Subcategories: 

Anti-white, Anti-black, Xenophobia) 

Racists comments toward black, white, asian. Generalizations 

about some characteristics, and hateful comments regarding refugees.  

Religion (Subcategories: Anti-Islam, 

Anti-Semitist) 

Everything about religion, including Judaism, Christianity, Islam, and religion in 

general. Both as a subject of hatred, or object. 

Specific Nation(s) Hate towards different countries, their systems, people (if the nationalities are 

mentioned), and certain events, like immigration, territory, and sovereignty. 

Specific Person Hate toward specific people who can be regular people, politicians, millionaires, 

celebrities, or some other related to specific news. 

Media (Subcategories: Towards media 

company, other) 

Comments and emotional outbursts about bias and false statements made on 

purpose by the corrupted media 

Armed Forces (Subcategories: Police, 

Military) 

Hate toward military, law enforcement, and the way they operate, which includes 

unethical behavior. 

Behavior (Subcategories: Humanity, 

other) 

Hate toward the world, humanity, immoral actions of some part of the society, 

ignorant people, people that committed certain actions, and that have certain 

habits. 

Tables adapted from (Salminen et al. 2018) 
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Context and Meta-Information 
Most hate speech detection tasks come from social media platforms or from blogs/media 

comments sections. Information about the context (page, article, topic, thread) or about the 

emitter (user names/nicknames and their posting history) has been used to improve hate 

detection by considering controversial topics/threads or users’ posting history (number of 

previous posts/comments containing hate speech or number of replies). However, in some cases 

such information is not available or may not be used due to legal/privacy reasons. 

Image and Multimodal analysis 
Although most research into hate speech only considers text analysis, comments and posts on 
social media also contain emoticons and images. There are several recent works that deal with 
analyzing images (usually satirical image macro formats widely shared on social media) or 
incorporating the analysis of emoticons inserted into text messages. 

Emoticons 
Although in most cases symbols or non-word entities are excluded from natural language 

processing methods in the data cleanup phase, the issue of automatic hate speech detection may 

make use of the meanings conveyed through their use. Recent models have attempted to include 

emoticons in the analysis by converting them from iconic signifiers to symbolic signifiers. 

According to (Orasan 2018) emoticons or emojis can be converted into their corresponding word 

strings by using the emoji library (https://pypi.org/project/emoji/). Furthermore, the author 

suggests that they may also be grouped or tagged according to meaning by using the EmojiNet 

(http://emojinet.knoesis.org/home.php) as a resource. 

 

Analyzing Images 
The automated analysis of images for the purposes of hate speech identification/classification 

tasks may be approached in several ways by combining two or three inputs (the image, the image 

caption and text detected in the image by use of OCR) in CNN (Convolutional Neural Networks) + 

RNN (Recurrent Neural Networks)  models, according to (Gomez et al. 2019). The authors 

compare several architectural models that include both text and image features and find that the 

image features do not significantly improve the prediction as compared to only using the text 

in the captions or tweets/posts/comments. Hate speech manifested in multimodal messages is 

based on complex relations between elements and cultural codes and references which makes 

identification/classification a very complex task. 

https://pypi.org/project/emoji/
http://emojinet.knoesis.org/home.php
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Overview of tools and resources  

The last section presents a quick overview of common tools and resources used by researchers 
and developers in the past five years to develop hate speech detection and classification 
solutions. 

Developer Tools & Libraries 

Libraries Description Category 

OSMod - 

The 

Conversatio

nAI 

Moderator 

App 

A machine-assisted human-moderation toolkit that uses Perspective AI from 

Google to predict the toxicity level of the comments.  
Conversat
ion AI 
Moderato
r 

Scrapy Scrapy is a free and open- source web-crawling framework written in Python. 

Originally designed for web scraping, it can also be used to extract data using 

APIs or as a general-purpose web crawler. 

Scrapping 

Apache 
Nutch 

Apache Nutch is a highly extensible and scalable open source web crawler 

software project. 
Web 
crawler 

Ludwig Ludwig is a toolbox that allows to train and test deep learning models without 

the need to write code. 
NLP, CV, 
ML 

kraken An OCR system with script detection and multiscript recognition 

support, with built in word bounding boxes and character cuts to 

be used for extracting text out of images. 

HTR/OCR 
system 

Google 
Teachable 

Teachable Machine is a web-based tool that makes creating 

machine learning models fast and easy. Image classification 

models can be exported and integrated into your own 

applications and platforms. 

ML, 
image 
classificati
on 

Snorkel ‘Snorkel is a system for programmatically building and managing 

training datasets without manual labeling. In Snorkel, users can 

develop large training datasets in hours or days rather than hand-

labeling them over weeks or months.’ https://www.snorkel.org/ 

https://github.com/snorkel-team/snorkel  

Labelling 

https://github.com/conversationai/conversationai-moderator
https://github.com/conversationai/conversationai-moderator
https://github.com/conversationai/conversationai-moderator
https://github.com/conversationai/conversationai-moderator
https://github.com/conversationai/conversationai-moderator
https://github.com/conversationai/conversationai-moderator
https://nutch.apache.org/
https://nutch.apache.org/
https://uber.github.io/ludwig/
http://kraken.re/
https://teachablemachine.withgoogle.com/
https://teachablemachine.withgoogle.com/
https://www.snorkel.org/
https://github.com/snorkel-team/snorkel
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spaCy ‘spaCy is a free open-source library for Natural Language Processing in Python. 

It features NER, POS tagging, dependency parsing, word vectors and more.’ 

https://spacy.io/ 

NLP, ML 

BERT ‘BERT, or Bidirectional Encoder Representations from Transformers, is a new 

method of pre-training language representations which obtains state-of-the-

art results on a wide array of Natural Language Processing (NLP) tasks.’ 

https://github.com/google-research/bert 

NLP, ML 

Transformer
s 

‘Transformers (formerly known as pytorch-transformers and pytorch-

pretrained-bert) provides state-of-the-art general-purpose architectures 

(BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet, CTRL...) for Natural Language 

Understanding (NLU) and Natural Language Generation (NLG) with over 32+ 

pretrained models in 100+ languages and deep interoperability between 

TensorFlow 2.0 and PyTorch’  https://github.com/huggingface/transformers 

NLP, ML 

Fast-Bert 

 

‘Fast-Bert is the deep learning library that allows developers and data scientists 

to train and deploy BERT and XLNet based models for natural language 

processing tasks beginning with Text Classification.’ 

https://github.com/kaushaltrivedi/fast-bert 

NLP,ML 

Gensim ‘Gensim is a Python library for topic modelling, document 

indexing and similarity retrieval with large corpora. Target audience is 

the natural language processing (NLP) and information retrieval (IR) 

community.’ https://pypi.org/project/gensim/  

NLP, ML 

LASER ‘LASER Language-Agnostic SEntence Representations - LASER is a library to 

calculate and use multilingual sentence embeddings.’ 

https://github.com/facebookresearch/LASER 

NLP, ML 

Keras ‘keras-text is a one-stop text classification library implementing various state of 

the art models with a clean and extendable interface to implement custom 

architectures.’ https://raghakot.github.io/keras-text/ 

NLP, ML 

FastText ‘FastText is an open-source, free, lightweight library that allows 

users to learn text representations and text classifiers. Also 

includes Python module and API’ (https://fasttext.cc/) See  

(Bojanowski et al. 2017) for enriching word vectors with subword 

information. 

NLP, ML 

 

Tools – Sentiment and Lexicons 
Tools Description Category 

SentiStrengt
h 

‘SentiStrength estimates the strength of positive and negative 
sentiment in short texts, even for informal language. It has human-
level accuracy for short social web texts in English, except political 
texts. SentiStrength reports two sentiment strengths:-1 (not 

Sentim
ent 
Analysi
s 

https://spacy.io/
https://github.com/google-research/bert
https://github.com/huggingface/transformers
https://github.com/kaushaltrivedi/fast-bert
https://pypi.org/project/gensim/
https://github.com/facebookresearch/LASER
https://raghakot.github.io/keras-text/
https://fasttext.cc/
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negative) to -5 (extremely negative) AND 1 (not positive) to 5 
(extremely positive) (free only for academic use)’ 
http://sentistrength.wlv.ac.uk/  

Stanford NLP 
Sentiment 
Treebank 

‘Deep learning model which builds up a representation of whole 
sentences based on the sentence structure. It computes the 
sentiment based on how words compose the meaning of longer 
phrases.’ https://nlp.stanford.edu/sentiment/  

Sentim
ent 
Analysi
s 

SentiWordN
et 

‘SentiWordNet is a lexical resource for opinion mining. 
SentiWordNet assigns to each synset of WordNet three sentiment 
scores: positivity, negativity, objectivity.’ 
https://github.com/aesuli/sentiwordnet 

Sentim
ent 
Analysi
s 

Google 
Perspective / 
Conversation 
AI 

‘Perspective is an API that uses machine learning models to score 
the perceived impact a comment might have on a conversation. For 
support, see:’ https://support.perspectiveapi.com/  
https://conversationai.github.io  

API 

Hatebase ‘Researchers are encouraged to take advantage of Hatebase’s 
vocabulary dataset, which is a valuable lexicon for searching other 
data repositories such as public forums, as well as Hatebase’s 
sightings dataset, which is useful for trending analysis’ 
https://hatebase.org/academia  

Lexicon 

Hurtlex ‘HurtLex is a lexicon of offensive, aggressive, and hateful words in 
over 50 languages. The words are divided into 17 categories, plus a 
macro-category indicating whether there is stereotype involved’  
https://github.com/valeriobasile/hurtlex  

Lexicon 

Online 
Abuse 
towards UK 
politicians 

‚404 abuse terms used in "Twits, Twats and Twaddle: Trends in 
Online Abuse towards UK Politicians", ICWSM 2018, and in "Online 
abuse of uk mps in 2015 and 2017: Perpetrators, targets, and 
topics"’ 
http://staffwww.dcs.shef.ac.uk/people/G.Gorrell/publications-
materials/abuse-terms.txt 

Lexicon 

Lexicon of 
abusive 
words 

‘This repository contains all new resources we created for our 
NAACL 2018 paper "Inducing a Lexicon of Abusive Words -- A 
Feature-Based Approach" by Michael Wiegand, Josef Ruppenhofer, 
Anna Schmidt and Clayton Greenberg. It also includes further 
details regarding our experimental set-up for which no space was 
available in the actual paper’. https://github.com/uds-lsv/lexicon-
of-abusive-words 

Lexicon 

http://sentistrength.wlv.ac.uk/
https://nlp.stanford.edu/sentiment/
https://github.com/aesuli/sentiwordnet
https://support.perspectiveapi.com/
https://conversationai.github.io/
https://hatebase.org/academia
https://github.com/valeriobasile/hurtlex
https://gate-socmedia.group.shef.ac.uk/wp-content/uploads/2019/07/Gorrell-Greenwood.pdf
https://gate-socmedia.group.shef.ac.uk/wp-content/uploads/2019/07/Gorrell-Greenwood.pdf
http://staffwww.dcs.shef.ac.uk/people/G.Gorrell/publications-materials/abuse-terms.txt
http://staffwww.dcs.shef.ac.uk/people/G.Gorrell/publications-materials/abuse-terms.txt
https://www.aclweb.org/anthology/N18-1095.pdf
https://www.aclweb.org/anthology/N18-1095.pdf
https://github.com/uds-lsv/lexicon-of-abusive-words
https://github.com/uds-lsv/lexicon-of-abusive-words
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Reddit Hate 
Lexicon 

A lexicon based on Reddit hate speech – see You can’t stay here: 
the efficacy of Reddit’s 2015 ban examined through hate speech, 
download 
https://www.dropbox.com/sh/5ud4fwxvb6q7k20/AAAH_SN8i5cfmJ
RKJteEW2b2a?dl=0 

Lexicon 

Racial Slurs 
Database 

Database of different designators and slurs used to refer to 
racial/national/ethnic groups http://www.rsdb.org/ 

Lexicon 

Swear Word 
List 

Dictionary of different swear words and curse words used in word 
filters https://www.noswearing.com/dictionary 

Lexicon 

 

Datasets 

Name Annotations Size Source Link 

Davidson et 

al.  

Hate speech 

and offense 

25000 Twitter https://github.com/t-davidson/hate-speech-and-

offensive-language  

Wikipedia 

Detox 

Personal 

attacks 

/insults 

100000 Wikipedia https://figshare.com/articles/Wikipedia_Detox_D

ata/4054689  

Waseem Hate speech, 

racism, sexism 

16000 Twitter https://github.com/zeerakw/hatespeech  

Kaggle / 

Impermium 

Insulting / Not 

insulting 

2236 Forum https://www.kaggle.com/c/detecting-insults-in-

social-commentary/overview  

OffensEval 

2019 

Offensive 

speech, 

targets 

14000 Twitter https://competitions.codalab.org/competitions/2

0011  

Stormfront Hate speech 10568 Forum https://github.com/aitor-garcia-p/hate-speech-

dataset  

hatEval Hate speech 

against 

immigrants 

13000 Twitter https://competitions.codalab.org/competitions/1

9935  

Founta et al.  Hate speech, 

abuse 

100000 Twitter https://github.com/ENCASEH2020/hatespeech-

twitter  

MMHS150K 

Dataset 

Hate speech in 

images  

150000 Twitter https://gombru.github.io/2019/10/09/MMHS/  

Hate Meme 

Detection 

Hate speech 

detection in 

Internet 

memes 

5020 Google 

Images 

https://github.com/imatge-upc/hate-speech-

detection  (utility script that downloads hate class 

memes) 

http://comp.social.gatech.edu/papers/cscw18-chand-hate.pdf
http://comp.social.gatech.edu/papers/cscw18-chand-hate.pdf
https://www.dropbox.com/sh/5ud4fwxvb6q7k20/AAAH_SN8i5cfmJRKJteEW2b2a?dl=0
https://www.dropbox.com/sh/5ud4fwxvb6q7k20/AAAH_SN8i5cfmJRKJteEW2b2a?dl=0
http://www.rsdb.org/
https://www.noswearing.com/dictionary
https://github.com/t-davidson/hate-speech-and-offensive-language
https://github.com/t-davidson/hate-speech-and-offensive-language
https://figshare.com/articles/Wikipedia_Detox_Data/4054689
https://figshare.com/articles/Wikipedia_Detox_Data/4054689
https://github.com/zeerakw/hatespeech
https://www.kaggle.com/c/detecting-insults-in-social-commentary/overview
https://www.kaggle.com/c/detecting-insults-in-social-commentary/overview
https://competitions.codalab.org/competitions/20011
https://competitions.codalab.org/competitions/20011
https://github.com/aitor-garcia-p/hate-speech-dataset
https://github.com/aitor-garcia-p/hate-speech-dataset
https://competitions.codalab.org/competitions/19935
https://competitions.codalab.org/competitions/19935
https://github.com/ENCASEH2020/hatespeech-twitter
https://github.com/ENCASEH2020/hatespeech-twitter
https://gombru.github.io/2019/10/09/MMHS/
https://github.com/imatge-upc/hate-speech-detection
https://github.com/imatge-upc/hate-speech-detection
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MEMES 

dataset 

30,000+ OCR’d 

political 

memes and 

their captions 

30000 Political 

Memes and 

their captions 

https://www.kaggle.com/ahmethamzaemra/me

mes-dataset/data 

https://www.kaggle.com/ahmethamzaemra/me

mes-dataset 

Hatebase Service to 

analyze hate 

speech 

- 3,639 terms, 

97 languages 

https://hatebase.org/ 

Free for non-profit organizations 

Meme 

Generator 

Data Set 

Memes 86310 Memes 

harvested 

from Meme 

Generator. 

https://www.kaggle.com/electron0zero/memege

nerator-dataset/home 

 

Features and models 
In (Pereira-Kohatsu et al. 2019) the authors provide an overview of features and models used by 

researchers in the past years. 

Source Features Model 

(Djuric et al. 2015) BOW, TF, TF-IDF, paragraph2vec 
embeddings 

LR 

(Zia et al. 2016) unigrams, TF-IDF, retweets, 
favourites, page authenticity 

SVM, NB, 
kNN 

(Silva et al. 2016) sentence structure Rule based 

(Waseem and Hovy 2016) Author gender, length of tweets, 
length of user description, location, 
char n-grams, word n-grams 

LR 

(Waseem 2016) char n-grams, word n-grams, 
skip-grams, tweet length, author 
gender, clusters, POS, Author 
Historical Salient Terms (AHST) 

LR 

(Badjatiya et al. 2017) char n-grams, TF-IDF, BoWV, 
random embeddings, GloVe 
embeddings 

LR, RF, SVM, 
GBDT, 
DNN, CNN, 
LTSM 

(Davidson et al. 2017) n-grams, TF-IDF, POS, readability, 
sentiment, hashtags, mentions, 
retweets, URLs, length 

LR, NB, DT, 
RF, SVM 

(Gambäck and Sikdar 2017) word2vec embeddings, random 
embeddings, char n-grams 

CNN 

(Park and Fung 2017) char embeddings, word 
embedding 

CharCNN, 
WordCNN, 
and 
HybridCNN 

(Del Vigna12 et al. 2017) POS, sentiment analysis, word2vec 
embeddings, CBOW, n-grams, text 

SVM, LSTM 

https://hatebase.org/
https://www.loc.gov/item/lcwaN0010226/
https://www.loc.gov/item/lcwaN0010226/
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features, word polarity 
(Salminen et al. 2018) n-grams, semantic and syntactic, 

TF-IDF, word2vec embeddings, 
doc2vec embeddings 

LR, DT, RF, 
Adabost, 
SVM 

(Zhang, Robinson, and Tepper 2018) n-grams, POS, TF-IDF, mentions, 
hastags, length, readability, 
sentiment, mispellings, emojis, 
punctuation, capitalisation, 
word embeddings 

SVM, CNN 
+ GRU 

 

Platform Architecture - Proposals 

The aim is to build a platform that can be used to monitor and score conversations in terms of 
hate level and toxicity with the final scope of being able to help moderators to give real time 
feedback to commenters and / or to allow online readers to consume only relevant information. 
The platform should be able to monitor comments on given online sites or platforms. For each 
and every new comment received or detected, it should predict its toxicity level and if this level 
is above a defined threshold (easiest rule), it should perform actions like notifying the 
moderator(s) and / or the publisher, hiding the comment (if possible and required), update a 
dashboard with information, etc. 
In this context, we see two main groups of tasks that need to be performed to achieve this project 
goals: 

1. Train the classification engines that will be used when making the prediction on the 

toxicity level. These engines should target texts, as well as images. 

2. Develop or customize an orchestration system that is able to implement the proposed 

workflow. 

Train the ML classification engines 
Training the classification engines to make predictions regarding the toxicity level of the 
comments or images (memes, for example) consist in preparing a training & validation dataset 
and selecting a framework to be used to train the engine using the training  & validation dataset. 
Preparing the training & validation dataset can be done in at least two ways: 

1. Scraping your data from the Web and then annotating this data to obtain the training & 

validation dataset for your classifiers. For this case, we encourage you to use Snorkel to 

label and manage your training datasets. 

2. Finding and adapting an existing dataset. See the list of available datasets in the previous 

section of this document. 

https://www.snorkel.org/


 

Op:Code  
 

Open Code for Hate-free Communication 
 

Co-Funded by the Rights, Equality and Citizenship  
Programme of the European Union (2014 - 2020) 

 

 
 

 

 
 

  
 

There are a plethora of ways to train your classifiers, using different open source available 
frameworks and libraries. From all of these, we recommend the usage of Ludwig from Uber AI 
Lab.  
Ludwig was released in February 2019 by Uber and represents the most simple way to 
experiment with building machine learning models. It is a toolbox that is built on top of 
TensorFlow that allows you to create, train, experiment and use various ML models without 
writing any line of code. Finding the right model architecture and hyperparameters for your 
model is a difficult aspect of the deep learning pipeline. Normally, you could spend hours 
experimenting with different parameters and deep learning network architectures to find the 
model that would fit your specific problem. With Ludwig you do all of these in declarative mode. 
Ludwig documentation is really good and you will be able to start experimenting with your 
models really quickly. Ludwig allows you to train a deep learning model by only providing a file 
containing the data like a csv and a YAML configuration file in which we need to specify some 
information about the features contained in our data file like if they are dependent or 
independent variables. If more than one dependent/output variable is specified, Ludwig will learn 
to predict all  of the output simultaneously (Gilbert Tanner). The main idea behind Ludwig is 
depicted (Gilbert Tanner) like follows: 

 
These specific types of encoders and decoders can be set in the configuration file and provides 
you with a highly modularized and extensible architecture that has specific preprocessing steps 
for each type of  data (Gilbert Tanner). 
For the purpose of this project, you will need to build at least one Text Classification engine. You 
can find a simple example on how to build a text classifier with Ludwig here: 
https://uber.github.io/ludwig/examples/#text-classification. 

https://uber.github.io/ludwig/
https://www.tensorflow.org/
https://uber.github.io/ludwig/examples/#text-classification
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Also, Ludwig can help you to train an Image Classification engine, as well. You need to have an 
annotated images dataset. With this dataset, you can experiment with Ludwig by following this 
example: https://uber.github.io/ludwig/examples/#image-classification. For image classification 
we suggest using an existing memes dataset (see the datasets section above) that you could 
eventually clean up using Snorkel. To obtain a more complete images dataset, you could use the 
Meme Generator Data Set, combining images with hate speech phrases, making sure your 
dataset is balanced and you have a good variability of your training data to avoid overfitting. 
Ludwig provides an easy way to use your engines and integrate them into a bigger platform by 
serving your predictions using Ludwig’s serve command. This command lets you load a pre-
trained model and serve it on an http server. CURL examples from Ludwig’s web site: 

● File: $ curl http://0.0.0.0:8000/predict -X POST -F 

'image_path=@path_to_image/example.png' 

● Text: $ curl http://0.0.0.0:8000/predict -X POST -F 'english_text=words to be translated' 

● Both Text and File: $ curl http://0.0.0.0:8000/predict -X POST -F 'text=mixed together 

with' -F 'image=@path_to_image/example.png' 

The host and the port where Ludwig is listening for incoming requests can be specified as optional 
arguments, -p PORT and -h HOST. 
Another way to quickly and visually train an image classification model is to use Google Teachable 
Machine. With Google Teachable Machine you can build an image classification in terms of 
minutes if you start from an annotated dataset. The training happens inside the browser (you 
need a machine with really good resources for larger image datasets) and the result can be 
exported as a TensorFlow model. To understand more about how this tool was built, check its 
GitHub repository here: https://github.com/googlecreativelab/teachablemachine-community. 
 

Augmenting the Image Classification with Text 
If you want to augment your image classification with the text extracted out of the images, our 
suggestion would be to use kraken. kraken is an OCR system with script detection and multiscript 
recognition support, with built in word bounding boxes and character cuts to be used for 
extracting text out of images. 
Public available kraken models are available. For extracting english written text from memes or 
other images containing text, you could use the default english model from here: 
https://github.com/mittagessen/kraken-models/tree/master/pyrnn/default. 
Otherwise, training a specific kraken model is done following the steps described here: 
http://kraken.re/ketos.html. In short, the process of training such a model is as follows: 

1. Prepare the training data by segmenting the images and generating HTML files 

(transcription environments) where you would do manual transcription.  

$ ketos transcribe -o output.html image_1.png image_2.png … 

https://uber.github.io/ludwig/examples/#image-classification
https://uber.github.io/ludwig/user_guide/#serve
https://teachablemachine.withgoogle.com/
https://teachablemachine.withgoogle.com/
https://github.com/googlecreativelab/teachablemachine-community
http://kraken.re/
https://github.com/mittagessen/kraken-models/tree/master/pyrnn/default
http://kraken.re/ketos.html
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You could also use the existing default model to prefill the transcription environments: 
$ ketos transcribe -p ~/english.mlmodel -p output.html image_1.png image_2.png ... 

2. Manual transcribe as many images as you can. Transcription has to be diplomatic, i.e. 

contain the exact character sequence in the line image, including original orthography.  

3. the contents of the filled transcription environments have to be extracted through the 

ketos extract command: 

$ ketos extract --output output_directory *.html 
The result will be a directory filled with line image text pairs NNNNNN.png and NNNNNN.gt.txt 
and a manifest.txt containing a list of all extracted lines. 

4. Training data is just a directory containing image-text file pairs as produced at step 3. The 

minimal example to train a new model is: 

$ ketos train training_data/*.png 
5. You could also fine tune an existing model with new training data by resuming the training 

of an already existing model: 

$ ketos train -i model_best.mlmodel more_memes/*.png 
With your text and / or image classification engines ready, you only need to develop or customize 
an orchestration system that is able to implement the proposed workflow. The two architecture 
proposals that follow is our suggestion on the way to go for the orchestration system. 
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Architecture Proposal (AP1): Your Orchestration System (OSMod) is Served By Publisher 
OSMod - The ConversationAI Moderator App is a machine-assisted human-moderation toolkit 
that uses Perspective AI from Google to predict the toxicity level of the comments. By building 
your moderation platform on top of OSMod you get all the orchestration functionality out of the 
box and you’ll only have to hook your own trained engines into the system to replace Perspective 
AI from the picture. 
OSMod is developed using the TypeScript language. TypeScript is a superset of JavaScript that 
compiles to plain JavaScript. Typescript is an open-source programming language developed and 
maintained by Microsoft. It's a strict superset of JavaScript, adding optional static typing to it. It 
was first launched on October 1st, 2012 and now is at version 3.8. 
“TypeScript in 5 minutes” section of TypeScript documentation is the best way to start learning / 
understanding TypeScript.  
Installation instructions for OSMod can be found here: 
https://github.com/conversationai/conversationai-moderator/blob/master/README.md. There 
are multiple ways to run the orchestration system, including a way that involves running it into a 
docker container. 
After installation, a running OSMod orchestration system should be comprised from the following 
components: 

1. A MySQL database that holds all of the applications state. The data model documentation 

can be found here: https://github.com/conversationai/conversationai-

moderator/blob/master/docs/modeling.md. 

2. The Frontend-Web Server service hosting the static ReactJS site. This sends messages to 

the Backend API service. 

3. The Backend API service is responsible for querying the SQL database and sending data to 

the front-end service. This is also the endpoint that receives requests from the 

commenting platform it is supporting moderation of; and it sends requests back to the 

commenting platform with user actions (e.g. to hide, reject or approve comments). 

4. Backend Work Queue service responsible for managing concurrent queue of 

asynchronous work.  

5. A number of assistant services responsible for automating tasks. Out of the box, this is 

just the Perspective API. This is the place where you should hook your own ML services.  

The GitHub repository describes in very concise manner all the components of the system - this 
documentation can be found here: https://github.com/conversationai/conversationai-
moderator/tree/master/docs. 
To understand how OSMod works, you need to start from understanding how comments go 
through the orchestration system. Here is the documentation for that: 

https://github.com/conversationai/conversationai-moderator
https://www.perspectiveapi.com/
https://www.typescriptlang.org/
https://www.w3schools.com/js/
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-8.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://github.com/conversationai/conversationai-moderator/blob/master/README.md
https://github.com/conversationai/conversationai-moderator/tree/master/docs
https://github.com/conversationai/conversationai-moderator/tree/master/docs
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https://github.com/conversationai/conversationai-
moderator/blob/master/docs/comment_flow.md.  
In summary, the comment workflow looks like the following: 

1. A publisher submits a comment or an article to OSMod through a specific API endpoint. 

2. The comment is sent to the assistants for prediction - here is the hook for your ML models 

/ services. 

3. The assistant comes back through a callback URL with a prediction / resolution. 

4. A ModerationRule is created to try to resolve the comment based on a predefined rule. 

5. If the comment is resolved by the rule, then a task is created to notify the publisher. 

6. If the comment is not resolved by the rule, then it is made available to the OSMod 

frontend so that moderators can approve or reject comments either singularly or in bulk, 

notifying the publisher about the resolution. 

Architecture Proposal (AP2): You Feed Your Own Orchestration System 
The architecture proposal above (AP1) assumes that you have the publisher serving you with 
comments or other online content to be moderated. If you’d like to build a moderation platform 
that is not triggered by a publisher, then you will need a mechanism that will monitor a specific 
online content source (a newspaper online, a twitter feed, etc.) and trigger the workflow, as per 
your needs. On the other hand, at the end of the workflow you will eventually need a way to 
expose the result of your moderation into a dashboard and to send the feedback to the original 
online content source, if this is possible. 
Our suggestion for these cases is to use architecture proposal (AP1) and to add a way to trigger 
the workflow by monitoring the online source(s) of interest. 

● Scrapy is the way to go if you want to regularly check comments on specific Web pages 

and trigger the moderation workflow, when needed. If you need more Web Crawling 

complexity, you could even integrate Apache Nutch into the whole picture. 

● Twitter API can be used to get public tweets to be monitored: 

https://developer.twitter.com/en/docs/labs/tweets-and-users/quick-start/get-tweets 

● Facebook API can be used to get public posts to be monitored: 

https://developers.facebook.com/docs/graph-api/reference/post/  

NOTE: Check https://github.com/conversationai/conversationai-
moderator/tree/a1ddb5e33e51ac0b0d25444134b0079598a66de8/packages/backend-
api/src/integrations for an example of intregrating YouTube with OSMod for YouTube channels 
moderation. 
 

https://github.com/conversationai/conversationai-moderator/blob/master/docs/comment_flow.md
https://github.com/conversationai/conversationai-moderator/blob/master/docs/comment_flow.md
https://developer.twitter.com/en/docs/labs/tweets-and-users/quick-start/get-tweets
https://developers.facebook.com/docs/graph-api/reference/post/
https://github.com/conversationai/conversationai-moderator/tree/a1ddb5e33e51ac0b0d25444134b0079598a66de8/packages/backend-api/src/integrations
https://github.com/conversationai/conversationai-moderator/tree/a1ddb5e33e51ac0b0d25444134b0079598a66de8/packages/backend-api/src/integrations
https://github.com/conversationai/conversationai-moderator/tree/a1ddb5e33e51ac0b0d25444134b0079598a66de8/packages/backend-api/src/integrations
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Glossary 

 
NLP Natural Language Processing 
ML Machine Learning 
CV Computer Vision 
DNN deep neural network 
POS Part-of-Speech tagging 
SVM Support Vector Machines 
CNN Convolutional Neural Network 
RF Random Forests 
DT Decision Trees 
FNN Feedforward Networks 
RNN Recurrent Neural Networks 
GDBT Gradient Boosted Decision Trees 
LSTM Long Short-Term Memory 
GRU GRU Gated Recurrent Unit Networks 
LR Logistic Regression 
kNN K-nearest Neighbor 
NB Naïve Bayse 
OCR Optical Character Recognition 
HTR Handwritten Text Recognition 
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