

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

Overview of Online Hate

Speech Detection Solutions

Introduction 3

Key concepts and definitions 3

Definitions 4

Levels of analysis 6

Hate speech, offensive speech, dangerous speech 6

Overview of methods and approaches 7

Content classification 7

Surface features 7

Word generalization 8

Sentiment Analysis 8

Lexicon-based approaches 8

Linguistic features 8

Knowledge-based approaches 8

Targets Identification 9

Context and Meta-Information 10

Image and Multimodal analysis 10

Emoticons 10

Analyzing Images 10

Overview of tools and resources 11

Developer Tools & Libraries 11

Tools – Sentiment and Lexicons 12

Datasets 14

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

Features and models 15

Platform Architecture - Proposals 16

Train the ML classification engines 16

Augmenting the Image Classification with Text 18

Architecture Proposal (AP1): Your Orchestration System (OSMod) is Served By Publisher 20

Architecture Proposal (AP2): You Feed Your Own Orchestration System 21

Glossary 22

References 22

Annexes Chyba! Záložka nie je definovaná.

Disclaimer: The content of this publication represents the views of the authors and is their
sole responsibility. The European Commission does not accept any responsibility for use that
may be made of the information it contains.

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

Introduction

The issue of online hate speech has been one of great interest in the past five years. While many

approaches have been developed in recent years, the problem of automated detection of hate

speech and offensive speech in online media is a complex one. First of all, the elements of

complexity derive from multiple definitions produced by international bodies, different national

legislations and different digital platforms. Secondly, hate-speech identification/classification

sometimes proves to be a difficult task even for human agents (expert or non-expert) due to

various cultural codes employed in different communication contexts (either national-linguistic

or platform/community specific). Furthermore, as online communicators use various codes and

combinations of codes (verbal – such as slang, nonverbal – such as images or emoticons, and

paraverbal signifiers – such as capitalization, punctuation) text classification approaches that are

mostly successful for other use cases yield poorer results for hate speech detection. Thirdly,

tweets, social media and blog/news media comments tend to be informal and noisy sources

which introduces another level of complexity – text processing for this particular case needs to

keep into account various spellings (or misspellings), combinations of verbal, nonverbal and

paraverbal signifiers (words, emoticons, punctuation/capitalization signifying

tone/stance/emotionality). Linguistic diversity and features such as sarcasm or humor, cultural

context, subversive tactics employed by users/commenters in online systems or difficulty arising

from potential misclassification against users’ freedom of expression are key factors to consider

when designing automated online hate speech detection solutions.

This report provides an overview of key aspects of online hate speech detection and state-of-the-

art tools and resources used in automated approaches to hate-speech detection.

Key concepts and definitions

A 2015 UNESCO study (Gagliardone et al. 2015) identifies definition, jurisdiction, comprehension

and intervention as the key issues relevant to countering online hate speech. International Law

Documents such as the Universal Declaration of Human Rights, International Covenant on Civil

and Political Rights, European Convention of Human Rights, American Convention of Human

Rights and the African Charter on Human and Peoples’ Rights provide stipulations on freedom of

expression, including freedom to seek, receive and impart information and ideas of all kinds,

regardless of frontier or medium of expression. However, some limitations are imposed with

respect to the issue of hate speech (either explicitly mentioned as such or not).

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

For example:

Any advocacy of national, racial or religious hatred that constitutes incitement to

discrimination, hostility or violence shall be prohibited by law.

International Covenant on Civil and Political Rights, Article 20(2)

Any propaganda for war and any advocacy of national, racial, or religious hatred that constitute

incitements to lawless violence or to any other similar action against any person or group of

persons on any grounds including those of race, color, religion, language, or national origin shall

be considered as offenses punishable by law.

American Convention of Human Rights, Article 13(5)

Definitions

Recent and growing international pressure on digital platforms to tackle the issue of hate speech

has driven efforts to better define what platforms through their community standards define as

hate speech.

In April 2018, Facebook publishes their definition with respect to ‘protected characteristics’:

We define hate speech as a direct attack on people based on what we call protected

characteristics — race, ethnicity, national origin, religious affiliation, sexual orientation, caste,

sex, gender, gender identity, and serious disease or disability. We also provide some protections

for immigration status. We define attack as violent or dehumanizing speech, statements of

inferiority, or calls for exclusion or segregation.

Tier 1 attacks, which target a person or group of people who share one of the above-
listed characteristics or immigration status […]
Tier 2 attacks, which target a person or group of people who share any of the above-
listed characteristics […]
Tier 3 attacks, which are calls to exclude or segregate a person or group of people based
on the above-listed characteristics […]. We do allow criticism of immigration policies and
arguments for restricting those policies.

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

Content that describes or negatively targets people with slurs, where slurs are defined
as words commonly used as insulting labels for the above-listed characteristics.

Facebook Community Standards

Facebook’s definition was last updated in December 2019 and it explicitly includes violent speech

in written or visual form, dehumanizing speech or imagery in the form of comparisons,

generalizations, or unqualified behavioral statements to insects, animals, filth, bacteria, different

types of criminals, statements of inferiority based on physical deficiency, mental deficiency,

moral deficiency, expressions of disgust, cursing etc. This definition may serve as a good starting

point for lexicon-based approaches as it is useful in defining categories of targets, but also

categories of features of hate speech to be detected.

In June 2019, YouTube also announced some changes to their hate speech policies as follows:

Hate speech is not allowed on YouTube. We remove content promoting violence or hatred
against individuals or groups based on any of the following attributes:

● Age
● Caste
● Disability
● Ethnicity
● Gender Identity and Expression
● Nationality
● Race
● Immigration Status
● Religion
● Sex/Gender
● Sexual Orientation
● Victims of a major violent event and their kin
● Veteran Status

YouTube Help

The definitions employed by digital platforms such as Facebook or YouTube have the advantage

of stemming from large numbers of real-world examples, covering different scenarios and being

constantly updated. However, most of them rely on and are applicable to a human understanding

of hate speech.

https://www.facebook.com/communitystandards/hate_speech
https://support.google.com/youtube/answer/2801939

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

Levels of analysis

In communication research, the key elements of hate speech analysis are the following:

● Content (what is being said?)

● Emitters (who is saying it?)

● Targets (who is it being said about?)

● Context (where is it being said?)

Although most approaches focus on content classification, recent scholarship shows a trend in

bot digital social science and computer science approaches to use targets and context (Meza,

Vincze, and Mogos 2018) or emitters and context (Pereira-Kohatsu et al. 2019) to improve on

detection and classification approaches that are solely content-based.

Hate speech, offensive speech, dangerous speech

The issue of detecting hate speech is delicate due to the multiple definitions and their

applicability in different contexts. Antagonistic or uncivil speech includes many subcategories and

various degrees, not all of them included in the definitions of hate speech. Some expressions may

be considered to be offensive, without being hate speech. Distinctions between categories such

as hate speech, offensive speech and dangerous speech (used in the scientific or legal

publications on the subject) may be subtle and contextual as it relies on judging the intent of the

speaker, the reaction of the hearer/reader or the potential of the speech to lead to real-world

acts of discrimination, exclusion or violence. Such attributes are very difficult to assess even by

human coders in the case of online hate speech as the intent of unknown speakers (with little or

no context provided) may be hard to make out, the reaction of the readers (whether or not they

are likely to be offended by the language/expressions used) may depend on individual

characteristics, and finally potential real world actions as effects may depend on the speakers’

positioning, status or power in a context/community where the statements are made as well as

the characteristics of the context/community.

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

Overview of methods and approaches

Taxonomies of hate speech have emerged in the past few years with the goal of providing coding

guidelines for human coders to provide examples in annotated datasets, but also breaking down

the identification and classification task based on lexical features.

As mentioned in the introduction, the task of classifying abusive language is a difficult one due

to several reasons as outlined in (Nobata et al. 2016):

● It’s not keyword spotting: users obfuscate words/phrases that may trigger automated

filters, use of just keywords can lead to many false positives.

● It’s difficult to track racial and minority insults as blacklists or filters are or should be

continuously updated to reflect socio-cultural or political changes, stereotypes or slang.

● Abusive language may even be very fluent and grammatically correct, not just noisy or

misspelled.

● Abusive statements may cross sentence boundaries; although the meaning of individual

sentences in a comment may not be offensive or hateful, its overall meaning may be.

● Detecting sarcasm requires knowledge of the context/community, its codes or even the

individual emitters in an online context

Content classification

Hate speech detection approaches using natural language processing techniques relies on using

different features as in most classification-related tasks. Schmidt and Wiegand provide an

overview of most approaches divided into several categories (Schmidt and Wiegand 2017):

Surface features
Unigram and larger n-grams are most often used as predictive features. Some approaches

consider character n-gram features as they seem to be more predictive than token n-grams

(character level approaches deal better with capturing the similarity between spelling alternates).

Other surface features considered are – URL mentions, punctuation, comment or token length,

capitalization, non-alphanumeric characters, words not found in dictionaries.

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

Word generalization
Approaches vary from Latent Dirichlet Allocation (LDA) methods that produce a topic distribution

for each word to the word embeddings approach. Vector representations may indicate words

that have similar meaning and be used as classification features. Paragraph or comment

embedding methods have been shown to be more effective in the case of hate speech detection.

Sentiment Analysis
Hate speech and sentiment analysis are related problems and some solutions to hate speech

detections include sentiment analysis / polarity classification as part of a multi-step process. High

negative polarity may be used in conjunction with other feature-based classification or with

target identification.

Lexicon-based approaches
Approaches based on lexical resources are very popular in hate speech analysis solutions.

Especially for the English language, there are several dictionaries (slurs, insults, swear words)

available on the web. Some approaches also involve using /applying weights to ‘bad words’.

However, research finds that lexicon-based approaches are insufficient as stand-alone features

as some studies have shown that almost half of texts that contain ‘bad words’ are not in fact hate

speech.

Linguistic features
Some approaches have used n-gram features combined with linguistic features. Linguistic

features such as POS (part of speech) tags may be used as generic tools or specifically tailored to

the problem. However, they are not shown to significantly improve hate speech detection.

Syntactic dependency analysis or co-occurrence are however used to detect relations between

tokens representing targets of hate speech and negative/offensive/hateful attributes associated.

Knowledge-based approaches
Very few approaches employ automatic reasoning based on existing ontologies (augmented with
concepts and relationships to suit the particular task of detecting hate speech). The main reason
is that existing ontologies should be augmented/adapted to suit the needs of different types of
hate speech scenarios (different targets, different/complex negative stereotypes in different
communities/cultures).

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

Targets Identification
Target-based approaches use lexicons of words designating groups or categories of persons

usually coupled with detection of violent, offensive or dehumanizing language. Target lexicons

may be based on previous research on vulnerable groups in a specific national-linguistic context,

NER tagging for groups/persons, or based on word embedding approaches.

For example, in (Salminen et al. 2018) a hate target taxonomy is defined in conjunction with hate

language to yield a total of 29 main and sub-categories and an additional neutral category (in

order not to generate pro-annotation bias). The categories described by Salminen et al. included

below are defined in the context of comments to online media.

Language Category Description

Accusation Accusing someone of something, without relevant evidence to support it.

Accusations of lies, treason, all types of felonies, etc.

Promoting Violence Calling people to deal with something using violence, asking for murders;

threatening human life.

Humiliation Using words like: idiot, retard, stupid, dumb, trying to degrade someone.

Swearing Filthy language, bad words, swearing, non-polit

Main Target Category Description

Financial Power (Subcategories:

Corporation, Wealthy)

Hatred toward wealthy people and companies and their privileges. Pointing out

their intentions to manipulate and commit crimes

Political Issues (Subcategories:

Terrorism, Politics, Ideology)

Hate toward government, political parties and movements, war, terrorism, the

flaws of the system.

Racism & Xenophobia (Subcategories:

Anti-white, Anti-black, Xenophobia)

Racists comments toward black, white, asian. Generalizations

about some characteristics, and hateful comments regarding refugees.

Religion (Subcategories: Anti-Islam,

Anti-Semitist)

Everything about religion, including Judaism, Christianity, Islam, and religion in

general. Both as a subject of hatred, or object.

Specific Nation(s) Hate towards different countries, their systems, people (if the nationalities are

mentioned), and certain events, like immigration, territory, and sovereignty.

Specific Person Hate toward specific people who can be regular people, politicians, millionaires,

celebrities, or some other related to specific news.

Media (Subcategories: Towards media

company, other)

Comments and emotional outbursts about bias and false statements made on

purpose by the corrupted media

Armed Forces (Subcategories: Police,

Military)

Hate toward military, law enforcement, and the way they operate, which includes

unethical behavior.

Behavior (Subcategories: Humanity,

other)

Hate toward the world, humanity, immoral actions of some part of the society,

ignorant people, people that committed certain actions, and that have certain

habits.

Tables adapted from (Salminen et al. 2018)

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

Context and Meta-Information
Most hate speech detection tasks come from social media platforms or from blogs/media

comments sections. Information about the context (page, article, topic, thread) or about the

emitter (user names/nicknames and their posting history) has been used to improve hate

detection by considering controversial topics/threads or users’ posting history (number of

previous posts/comments containing hate speech or number of replies). However, in some cases

such information is not available or may not be used due to legal/privacy reasons.

Image and Multimodal analysis
Although most research into hate speech only considers text analysis, comments and posts on
social media also contain emoticons and images. There are several recent works that deal with
analyzing images (usually satirical image macro formats widely shared on social media) or
incorporating the analysis of emoticons inserted into text messages.

Emoticons
Although in most cases symbols or non-word entities are excluded from natural language

processing methods in the data cleanup phase, the issue of automatic hate speech detection may

make use of the meanings conveyed through their use. Recent models have attempted to include

emoticons in the analysis by converting them from iconic signifiers to symbolic signifiers.

According to (Orasan 2018) emoticons or emojis can be converted into their corresponding word

strings by using the emoji library (https://pypi.org/project/emoji/). Furthermore, the author

suggests that they may also be grouped or tagged according to meaning by using the EmojiNet

(http://emojinet.knoesis.org/home.php) as a resource.

Analyzing Images
The automated analysis of images for the purposes of hate speech identification/classification

tasks may be approached in several ways by combining two or three inputs (the image, the image

caption and text detected in the image by use of OCR) in CNN (Convolutional Neural Networks) +

RNN (Recurrent Neural Networks) models, according to (Gomez et al. 2019). The authors

compare several architectural models that include both text and image features and find that the

image features do not significantly improve the prediction as compared to only using the text

in the captions or tweets/posts/comments. Hate speech manifested in multimodal messages is

based on complex relations between elements and cultural codes and references which makes

identification/classification a very complex task.

https://pypi.org/project/emoji/
http://emojinet.knoesis.org/home.php

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

Overview of tools and resources

The last section presents a quick overview of common tools and resources used by researchers
and developers in the past five years to develop hate speech detection and classification
solutions.

Developer Tools & Libraries

Libraries Description Category

OSMod -

The

Conversatio

nAI

Moderator

App

A machine-assisted human-moderation toolkit that uses Perspective AI from

Google to predict the toxicity level of the comments.
Conversat
ion AI
Moderato
r

Scrapy Scrapy is a free and open- source web-crawling framework written in Python.

Originally designed for web scraping, it can also be used to extract data using

APIs or as a general-purpose web crawler.

Scrapping

Apache
Nutch

Apache Nutch is a highly extensible and scalable open source web crawler

software project.
Web
crawler

Ludwig Ludwig is a toolbox that allows to train and test deep learning models without

the need to write code.
NLP, CV,
ML

kraken An OCR system with script detection and multiscript recognition

support, with built in word bounding boxes and character cuts to

be used for extracting text out of images.

HTR/OCR
system

Google
Teachable

Teachable Machine is a web-based tool that makes creating

machine learning models fast and easy. Image classification

models can be exported and integrated into your own

applications and platforms.

ML,
image
classificati
on

Snorkel ‘Snorkel is a system for programmatically building and managing

training datasets without manual labeling. In Snorkel, users can

develop large training datasets in hours or days rather than hand-

labeling them over weeks or months.’ https://www.snorkel.org/

https://github.com/snorkel-team/snorkel

Labelling

https://github.com/conversationai/conversationai-moderator
https://github.com/conversationai/conversationai-moderator
https://github.com/conversationai/conversationai-moderator
https://github.com/conversationai/conversationai-moderator
https://github.com/conversationai/conversationai-moderator
https://github.com/conversationai/conversationai-moderator
https://nutch.apache.org/
https://nutch.apache.org/
https://uber.github.io/ludwig/
http://kraken.re/
https://teachablemachine.withgoogle.com/
https://teachablemachine.withgoogle.com/
https://www.snorkel.org/
https://github.com/snorkel-team/snorkel

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

spaCy ‘spaCy is a free open-source library for Natural Language Processing in Python.

It features NER, POS tagging, dependency parsing, word vectors and more.’

https://spacy.io/

NLP, ML

BERT ‘BERT, or Bidirectional Encoder Representations from Transformers, is a new

method of pre-training language representations which obtains state-of-the-

art results on a wide array of Natural Language Processing (NLP) tasks.’

https://github.com/google-research/bert

NLP, ML

Transformer
s

‘Transformers (formerly known as pytorch-transformers and pytorch-

pretrained-bert) provides state-of-the-art general-purpose architectures

(BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet, CTRL...) for Natural Language

Understanding (NLU) and Natural Language Generation (NLG) with over 32+

pretrained models in 100+ languages and deep interoperability between

TensorFlow 2.0 and PyTorch’ https://github.com/huggingface/transformers

NLP, ML

Fast-Bert

‘Fast-Bert is the deep learning library that allows developers and data scientists

to train and deploy BERT and XLNet based models for natural language

processing tasks beginning with Text Classification.’

https://github.com/kaushaltrivedi/fast-bert

NLP,ML

Gensim ‘Gensim is a Python library for topic modelling, document

indexing and similarity retrieval with large corpora. Target audience is

the natural language processing (NLP) and information retrieval (IR)

community.’ https://pypi.org/project/gensim/

NLP, ML

LASER ‘LASER Language-Agnostic SEntence Representations - LASER is a library to

calculate and use multilingual sentence embeddings.’

https://github.com/facebookresearch/LASER

NLP, ML

Keras ‘keras-text is a one-stop text classification library implementing various state of

the art models with a clean and extendable interface to implement custom

architectures.’ https://raghakot.github.io/keras-text/

NLP, ML

FastText ‘FastText is an open-source, free, lightweight library that allows

users to learn text representations and text classifiers. Also

includes Python module and API’ (https://fasttext.cc/) See

(Bojanowski et al. 2017) for enriching word vectors with subword

information.

NLP, ML

Tools – Sentiment and Lexicons
Tools Description Category

SentiStrengt
h

‘SentiStrength estimates the strength of positive and negative
sentiment in short texts, even for informal language. It has human-
level accuracy for short social web texts in English, except political
texts. SentiStrength reports two sentiment strengths:-1 (not

Sentim
ent
Analysi
s

https://spacy.io/
https://github.com/google-research/bert
https://github.com/huggingface/transformers
https://github.com/kaushaltrivedi/fast-bert
https://pypi.org/project/gensim/
https://github.com/facebookresearch/LASER
https://raghakot.github.io/keras-text/
https://fasttext.cc/

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

negative) to -5 (extremely negative) AND 1 (not positive) to 5
(extremely positive) (free only for academic use)’
http://sentistrength.wlv.ac.uk/

Stanford NLP
Sentiment
Treebank

‘Deep learning model which builds up a representation of whole
sentences based on the sentence structure. It computes the
sentiment based on how words compose the meaning of longer
phrases.’ https://nlp.stanford.edu/sentiment/

Sentim
ent
Analysi
s

SentiWordN
et

‘SentiWordNet is a lexical resource for opinion mining.
SentiWordNet assigns to each synset of WordNet three sentiment
scores: positivity, negativity, objectivity.’
https://github.com/aesuli/sentiwordnet

Sentim
ent
Analysi
s

Google
Perspective /
Conversation
AI

‘Perspective is an API that uses machine learning models to score
the perceived impact a comment might have on a conversation. For
support, see:’ https://support.perspectiveapi.com/
https://conversationai.github.io

API

Hatebase ‘Researchers are encouraged to take advantage of Hatebase’s
vocabulary dataset, which is a valuable lexicon for searching other
data repositories such as public forums, as well as Hatebase’s
sightings dataset, which is useful for trending analysis’
https://hatebase.org/academia

Lexicon

Hurtlex ‘HurtLex is a lexicon of offensive, aggressive, and hateful words in
over 50 languages. The words are divided into 17 categories, plus a
macro-category indicating whether there is stereotype involved’
https://github.com/valeriobasile/hurtlex

Lexicon

Online
Abuse
towards UK
politicians

‚404 abuse terms used in "Twits, Twats and Twaddle: Trends in
Online Abuse towards UK Politicians", ICWSM 2018, and in "Online
abuse of uk mps in 2015 and 2017: Perpetrators, targets, and
topics"’
http://staffwww.dcs.shef.ac.uk/people/G.Gorrell/publications-
materials/abuse-terms.txt

Lexicon

Lexicon of
abusive
words

‘This repository contains all new resources we created for our
NAACL 2018 paper "Inducing a Lexicon of Abusive Words -- A
Feature-Based Approach" by Michael Wiegand, Josef Ruppenhofer,
Anna Schmidt and Clayton Greenberg. It also includes further
details regarding our experimental set-up for which no space was
available in the actual paper’. https://github.com/uds-lsv/lexicon-
of-abusive-words

Lexicon

http://sentistrength.wlv.ac.uk/
https://nlp.stanford.edu/sentiment/
https://github.com/aesuli/sentiwordnet
https://support.perspectiveapi.com/
https://conversationai.github.io/
https://hatebase.org/academia
https://github.com/valeriobasile/hurtlex
https://gate-socmedia.group.shef.ac.uk/wp-content/uploads/2019/07/Gorrell-Greenwood.pdf
https://gate-socmedia.group.shef.ac.uk/wp-content/uploads/2019/07/Gorrell-Greenwood.pdf
http://staffwww.dcs.shef.ac.uk/people/G.Gorrell/publications-materials/abuse-terms.txt
http://staffwww.dcs.shef.ac.uk/people/G.Gorrell/publications-materials/abuse-terms.txt
https://www.aclweb.org/anthology/N18-1095.pdf
https://www.aclweb.org/anthology/N18-1095.pdf
https://github.com/uds-lsv/lexicon-of-abusive-words
https://github.com/uds-lsv/lexicon-of-abusive-words

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

Reddit Hate
Lexicon

A lexicon based on Reddit hate speech – see You can’t stay here:
the efficacy of Reddit’s 2015 ban examined through hate speech,
download
https://www.dropbox.com/sh/5ud4fwxvb6q7k20/AAAH_SN8i5cfmJ
RKJteEW2b2a?dl=0

Lexicon

Racial Slurs
Database

Database of different designators and slurs used to refer to
racial/national/ethnic groups http://www.rsdb.org/

Lexicon

Swear Word
List

Dictionary of different swear words and curse words used in word
filters https://www.noswearing.com/dictionary

Lexicon

Datasets

Name Annotations Size Source Link

Davidson et

al.

Hate speech

and offense

25000 Twitter https://github.com/t-davidson/hate-speech-and-

offensive-language

Wikipedia

Detox

Personal

attacks

/insults

100000 Wikipedia https://figshare.com/articles/Wikipedia_Detox_D

ata/4054689

Waseem Hate speech,

racism, sexism

16000 Twitter https://github.com/zeerakw/hatespeech

Kaggle /

Impermium

Insulting / Not

insulting

2236 Forum https://www.kaggle.com/c/detecting-insults-in-

social-commentary/overview

OffensEval

2019

Offensive

speech,

targets

14000 Twitter https://competitions.codalab.org/competitions/2

0011

Stormfront Hate speech 10568 Forum https://github.com/aitor-garcia-p/hate-speech-

dataset

hatEval Hate speech

against

immigrants

13000 Twitter https://competitions.codalab.org/competitions/1

9935

Founta et al. Hate speech,

abuse

100000 Twitter https://github.com/ENCASEH2020/hatespeech-

twitter

MMHS150K

Dataset

Hate speech in

images

150000 Twitter https://gombru.github.io/2019/10/09/MMHS/

Hate Meme

Detection

Hate speech

detection in

Internet

memes

5020 Google

Images

https://github.com/imatge-upc/hate-speech-

detection (utility script that downloads hate class

memes)

http://comp.social.gatech.edu/papers/cscw18-chand-hate.pdf
http://comp.social.gatech.edu/papers/cscw18-chand-hate.pdf
https://www.dropbox.com/sh/5ud4fwxvb6q7k20/AAAH_SN8i5cfmJRKJteEW2b2a?dl=0
https://www.dropbox.com/sh/5ud4fwxvb6q7k20/AAAH_SN8i5cfmJRKJteEW2b2a?dl=0
http://www.rsdb.org/
https://www.noswearing.com/dictionary
https://github.com/t-davidson/hate-speech-and-offensive-language
https://github.com/t-davidson/hate-speech-and-offensive-language
https://figshare.com/articles/Wikipedia_Detox_Data/4054689
https://figshare.com/articles/Wikipedia_Detox_Data/4054689
https://github.com/zeerakw/hatespeech
https://www.kaggle.com/c/detecting-insults-in-social-commentary/overview
https://www.kaggle.com/c/detecting-insults-in-social-commentary/overview
https://competitions.codalab.org/competitions/20011
https://competitions.codalab.org/competitions/20011
https://github.com/aitor-garcia-p/hate-speech-dataset
https://github.com/aitor-garcia-p/hate-speech-dataset
https://competitions.codalab.org/competitions/19935
https://competitions.codalab.org/competitions/19935
https://github.com/ENCASEH2020/hatespeech-twitter
https://github.com/ENCASEH2020/hatespeech-twitter
https://gombru.github.io/2019/10/09/MMHS/
https://github.com/imatge-upc/hate-speech-detection
https://github.com/imatge-upc/hate-speech-detection

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

MEMES

dataset

30,000+ OCR’d

political

memes and

their captions

30000 Political

Memes and

their captions

https://www.kaggle.com/ahmethamzaemra/me

mes-dataset/data

https://www.kaggle.com/ahmethamzaemra/me

mes-dataset

Hatebase Service to

analyze hate

speech

- 3,639 terms,

97 languages

https://hatebase.org/

Free for non-profit organizations

Meme

Generator

Data Set

Memes 86310 Memes

harvested

from Meme

Generator.

https://www.kaggle.com/electron0zero/memege

nerator-dataset/home

Features and models
In (Pereira-Kohatsu et al. 2019) the authors provide an overview of features and models used by

researchers in the past years.

Source Features Model

(Djuric et al. 2015) BOW, TF, TF-IDF, paragraph2vec
embeddings

LR

(Zia et al. 2016) unigrams, TF-IDF, retweets,
favourites, page authenticity

SVM, NB,
kNN

(Silva et al. 2016) sentence structure Rule based

(Waseem and Hovy 2016) Author gender, length of tweets,
length of user description, location,
char n-grams, word n-grams

LR

(Waseem 2016) char n-grams, word n-grams,
skip-grams, tweet length, author
gender, clusters, POS, Author
Historical Salient Terms (AHST)

LR

(Badjatiya et al. 2017) char n-grams, TF-IDF, BoWV,
random embeddings, GloVe
embeddings

LR, RF, SVM,
GBDT,
DNN, CNN,
LTSM

(Davidson et al. 2017) n-grams, TF-IDF, POS, readability,
sentiment, hashtags, mentions,
retweets, URLs, length

LR, NB, DT,
RF, SVM

(Gambäck and Sikdar 2017) word2vec embeddings, random
embeddings, char n-grams

CNN

(Park and Fung 2017) char embeddings, word
embedding

CharCNN,
WordCNN,
and
HybridCNN

(Del Vigna12 et al. 2017) POS, sentiment analysis, word2vec
embeddings, CBOW, n-grams, text

SVM, LSTM

https://hatebase.org/
https://www.loc.gov/item/lcwaN0010226/
https://www.loc.gov/item/lcwaN0010226/

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

features, word polarity
(Salminen et al. 2018) n-grams, semantic and syntactic,

TF-IDF, word2vec embeddings,
doc2vec embeddings

LR, DT, RF,
Adabost,
SVM

(Zhang, Robinson, and Tepper 2018) n-grams, POS, TF-IDF, mentions,
hastags, length, readability,
sentiment, mispellings, emojis,
punctuation, capitalisation,
word embeddings

SVM, CNN
+ GRU

Platform Architecture - Proposals

The aim is to build a platform that can be used to monitor and score conversations in terms of
hate level and toxicity with the final scope of being able to help moderators to give real time
feedback to commenters and / or to allow online readers to consume only relevant information.
The platform should be able to monitor comments on given online sites or platforms. For each
and every new comment received or detected, it should predict its toxicity level and if this level
is above a defined threshold (easiest rule), it should perform actions like notifying the
moderator(s) and / or the publisher, hiding the comment (if possible and required), update a
dashboard with information, etc.
In this context, we see two main groups of tasks that need to be performed to achieve this project
goals:

1. Train the classification engines that will be used when making the prediction on the

toxicity level. These engines should target texts, as well as images.

2. Develop or customize an orchestration system that is able to implement the proposed

workflow.

Train the ML classification engines
Training the classification engines to make predictions regarding the toxicity level of the
comments or images (memes, for example) consist in preparing a training & validation dataset
and selecting a framework to be used to train the engine using the training & validation dataset.
Preparing the training & validation dataset can be done in at least two ways:

1. Scraping your data from the Web and then annotating this data to obtain the training &

validation dataset for your classifiers. For this case, we encourage you to use Snorkel to

label and manage your training datasets.

2. Finding and adapting an existing dataset. See the list of available datasets in the previous

section of this document.

https://www.snorkel.org/

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

There are a plethora of ways to train your classifiers, using different open source available
frameworks and libraries. From all of these, we recommend the usage of Ludwig from Uber AI
Lab.
Ludwig was released in February 2019 by Uber and represents the most simple way to
experiment with building machine learning models. It is a toolbox that is built on top of
TensorFlow that allows you to create, train, experiment and use various ML models without
writing any line of code. Finding the right model architecture and hyperparameters for your
model is a difficult aspect of the deep learning pipeline. Normally, you could spend hours
experimenting with different parameters and deep learning network architectures to find the
model that would fit your specific problem. With Ludwig you do all of these in declarative mode.
Ludwig documentation is really good and you will be able to start experimenting with your
models really quickly. Ludwig allows you to train a deep learning model by only providing a file
containing the data like a csv and a YAML configuration file in which we need to specify some
information about the features contained in our data file like if they are dependent or
independent variables. If more than one dependent/output variable is specified, Ludwig will learn
to predict all of the output simultaneously (Gilbert Tanner). The main idea behind Ludwig is
depicted (Gilbert Tanner) like follows:

These specific types of encoders and decoders can be set in the configuration file and provides
you with a highly modularized and extensible architecture that has specific preprocessing steps
for each type of data (Gilbert Tanner).
For the purpose of this project, you will need to build at least one Text Classification engine. You
can find a simple example on how to build a text classifier with Ludwig here:
https://uber.github.io/ludwig/examples/#text-classification.

https://uber.github.io/ludwig/
https://www.tensorflow.org/
https://uber.github.io/ludwig/examples/#text-classification

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

Also, Ludwig can help you to train an Image Classification engine, as well. You need to have an
annotated images dataset. With this dataset, you can experiment with Ludwig by following this
example: https://uber.github.io/ludwig/examples/#image-classification. For image classification
we suggest using an existing memes dataset (see the datasets section above) that you could
eventually clean up using Snorkel. To obtain a more complete images dataset, you could use the
Meme Generator Data Set, combining images with hate speech phrases, making sure your
dataset is balanced and you have a good variability of your training data to avoid overfitting.
Ludwig provides an easy way to use your engines and integrate them into a bigger platform by
serving your predictions using Ludwig’s serve command. This command lets you load a pre-
trained model and serve it on an http server. CURL examples from Ludwig’s web site:

● File: $ curl http://0.0.0.0:8000/predict -X POST -F

'image_path=@path_to_image/example.png'

● Text: $ curl http://0.0.0.0:8000/predict -X POST -F 'english_text=words to be translated'

● Both Text and File: $ curl http://0.0.0.0:8000/predict -X POST -F 'text=mixed together

with' -F 'image=@path_to_image/example.png'

The host and the port where Ludwig is listening for incoming requests can be specified as optional
arguments, -p PORT and -h HOST.
Another way to quickly and visually train an image classification model is to use Google Teachable
Machine. With Google Teachable Machine you can build an image classification in terms of
minutes if you start from an annotated dataset. The training happens inside the browser (you
need a machine with really good resources for larger image datasets) and the result can be
exported as a TensorFlow model. To understand more about how this tool was built, check its
GitHub repository here: https://github.com/googlecreativelab/teachablemachine-community.

Augmenting the Image Classification with Text
If you want to augment your image classification with the text extracted out of the images, our
suggestion would be to use kraken. kraken is an OCR system with script detection and multiscript
recognition support, with built in word bounding boxes and character cuts to be used for
extracting text out of images.
Public available kraken models are available. For extracting english written text from memes or
other images containing text, you could use the default english model from here:
https://github.com/mittagessen/kraken-models/tree/master/pyrnn/default.
Otherwise, training a specific kraken model is done following the steps described here:
http://kraken.re/ketos.html. In short, the process of training such a model is as follows:

1. Prepare the training data by segmenting the images and generating HTML files

(transcription environments) where you would do manual transcription.

$ ketos transcribe -o output.html image_1.png image_2.png …

https://uber.github.io/ludwig/examples/#image-classification
https://uber.github.io/ludwig/user_guide/#serve
https://teachablemachine.withgoogle.com/
https://teachablemachine.withgoogle.com/
https://github.com/googlecreativelab/teachablemachine-community
http://kraken.re/
https://github.com/mittagessen/kraken-models/tree/master/pyrnn/default
http://kraken.re/ketos.html

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

You could also use the existing default model to prefill the transcription environments:
$ ketos transcribe -p ~/english.mlmodel -p output.html image_1.png image_2.png ...

2. Manual transcribe as many images as you can. Transcription has to be diplomatic, i.e.

contain the exact character sequence in the line image, including original orthography.

3. the contents of the filled transcription environments have to be extracted through the

ketos extract command:

$ ketos extract --output output_directory *.html
The result will be a directory filled with line image text pairs NNNNNN.png and NNNNNN.gt.txt
and a manifest.txt containing a list of all extracted lines.

4. Training data is just a directory containing image-text file pairs as produced at step 3. The

minimal example to train a new model is:

$ ketos train training_data/*.png
5. You could also fine tune an existing model with new training data by resuming the training

of an already existing model:

$ ketos train -i model_best.mlmodel more_memes/*.png
With your text and / or image classification engines ready, you only need to develop or customize
an orchestration system that is able to implement the proposed workflow. The two architecture
proposals that follow is our suggestion on the way to go for the orchestration system.

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

Architecture Proposal (AP1): Your Orchestration System (OSMod) is Served By Publisher
OSMod - The ConversationAI Moderator App is a machine-assisted human-moderation toolkit
that uses Perspective AI from Google to predict the toxicity level of the comments. By building
your moderation platform on top of OSMod you get all the orchestration functionality out of the
box and you’ll only have to hook your own trained engines into the system to replace Perspective
AI from the picture.
OSMod is developed using the TypeScript language. TypeScript is a superset of JavaScript that
compiles to plain JavaScript. Typescript is an open-source programming language developed and
maintained by Microsoft. It's a strict superset of JavaScript, adding optional static typing to it. It
was first launched on October 1st, 2012 and now is at version 3.8.
“TypeScript in 5 minutes” section of TypeScript documentation is the best way to start learning /
understanding TypeScript.
Installation instructions for OSMod can be found here:
https://github.com/conversationai/conversationai-moderator/blob/master/README.md. There
are multiple ways to run the orchestration system, including a way that involves running it into a
docker container.
After installation, a running OSMod orchestration system should be comprised from the following
components:

1. A MySQL database that holds all of the applications state. The data model documentation

can be found here: https://github.com/conversationai/conversationai-

moderator/blob/master/docs/modeling.md.

2. The Frontend-Web Server service hosting the static ReactJS site. This sends messages to

the Backend API service.

3. The Backend API service is responsible for querying the SQL database and sending data to

the front-end service. This is also the endpoint that receives requests from the

commenting platform it is supporting moderation of; and it sends requests back to the

commenting platform with user actions (e.g. to hide, reject or approve comments).

4. Backend Work Queue service responsible for managing concurrent queue of

asynchronous work.

5. A number of assistant services responsible for automating tasks. Out of the box, this is

just the Perspective API. This is the place where you should hook your own ML services.

The GitHub repository describes in very concise manner all the components of the system - this
documentation can be found here: https://github.com/conversationai/conversationai-
moderator/tree/master/docs.
To understand how OSMod works, you need to start from understanding how comments go
through the orchestration system. Here is the documentation for that:

https://github.com/conversationai/conversationai-moderator
https://www.perspectiveapi.com/
https://www.typescriptlang.org/
https://www.w3schools.com/js/
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-8.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://github.com/conversationai/conversationai-moderator/blob/master/README.md
https://github.com/conversationai/conversationai-moderator/tree/master/docs
https://github.com/conversationai/conversationai-moderator/tree/master/docs

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

https://github.com/conversationai/conversationai-
moderator/blob/master/docs/comment_flow.md.
In summary, the comment workflow looks like the following:

1. A publisher submits a comment or an article to OSMod through a specific API endpoint.

2. The comment is sent to the assistants for prediction - here is the hook for your ML models

/ services.

3. The assistant comes back through a callback URL with a prediction / resolution.

4. A ModerationRule is created to try to resolve the comment based on a predefined rule.

5. If the comment is resolved by the rule, then a task is created to notify the publisher.

6. If the comment is not resolved by the rule, then it is made available to the OSMod

frontend so that moderators can approve or reject comments either singularly or in bulk,

notifying the publisher about the resolution.

Architecture Proposal (AP2): You Feed Your Own Orchestration System
The architecture proposal above (AP1) assumes that you have the publisher serving you with
comments or other online content to be moderated. If you’d like to build a moderation platform
that is not triggered by a publisher, then you will need a mechanism that will monitor a specific
online content source (a newspaper online, a twitter feed, etc.) and trigger the workflow, as per
your needs. On the other hand, at the end of the workflow you will eventually need a way to
expose the result of your moderation into a dashboard and to send the feedback to the original
online content source, if this is possible.
Our suggestion for these cases is to use architecture proposal (AP1) and to add a way to trigger
the workflow by monitoring the online source(s) of interest.

● Scrapy is the way to go if you want to regularly check comments on specific Web pages

and trigger the moderation workflow, when needed. If you need more Web Crawling

complexity, you could even integrate Apache Nutch into the whole picture.

● Twitter API can be used to get public tweets to be monitored:

https://developer.twitter.com/en/docs/labs/tweets-and-users/quick-start/get-tweets

● Facebook API can be used to get public posts to be monitored:

https://developers.facebook.com/docs/graph-api/reference/post/

NOTE: Check https://github.com/conversationai/conversationai-
moderator/tree/a1ddb5e33e51ac0b0d25444134b0079598a66de8/packages/backend-
api/src/integrations for an example of intregrating YouTube with OSMod for YouTube channels
moderation.

https://github.com/conversationai/conversationai-moderator/blob/master/docs/comment_flow.md
https://github.com/conversationai/conversationai-moderator/blob/master/docs/comment_flow.md
https://developer.twitter.com/en/docs/labs/tweets-and-users/quick-start/get-tweets
https://developers.facebook.com/docs/graph-api/reference/post/
https://github.com/conversationai/conversationai-moderator/tree/a1ddb5e33e51ac0b0d25444134b0079598a66de8/packages/backend-api/src/integrations
https://github.com/conversationai/conversationai-moderator/tree/a1ddb5e33e51ac0b0d25444134b0079598a66de8/packages/backend-api/src/integrations
https://github.com/conversationai/conversationai-moderator/tree/a1ddb5e33e51ac0b0d25444134b0079598a66de8/packages/backend-api/src/integrations

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

Glossary

NLP Natural Language Processing
ML Machine Learning
CV Computer Vision
DNN deep neural network
POS Part-of-Speech tagging
SVM Support Vector Machines
CNN Convolutional Neural Network
RF Random Forests
DT Decision Trees
FNN Feedforward Networks
RNN Recurrent Neural Networks
GDBT Gradient Boosted Decision Trees
LSTM Long Short-Term Memory
GRU GRU Gated Recurrent Unit Networks
LR Logistic Regression
kNN K-nearest Neighbor
NB Naïve Bayse
OCR Optical Character Recognition
HTR Handwritten Text Recognition

References

Badjatiya, Pinkesh, Shashank Gupta, Manish Gupta, and Vasudeva Varma. 2017. “Deep Learning for Hate Speech
Detection in Tweets.” In Proceedings of the 26th International Conference on World Wide Web
Companion, 759–760.

Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. “Enriching Word Vectors with
Subword Information.” Transactions of the Association for Computational Linguistics 5: 135–146.

Davidson, Thomas, Dana Warmsley, Michael Macy, and Ingmar Weber. 2017. “Automated Hate Speech Detection
and the Problem of Offensive Language.” In Eleventh International Aaai Conference on Web and Social
Media.

Del Vigna12, Fabio, Andrea Cimino23, Felice Dell’Orletta, Marinella Petrocchi, and Maurizio Tesconi. 2017. “Hate
Me, Hate Me Not: Hate Speech Detection on Facebook.” In Proceedings of the First Italian Conference on
Cybersecurity (ITASEC17), 86–95.

Djuric, Nemanja, Jing Zhou, Robin Morris, Mihajlo Grbovic, Vladan Radosavljevic, and Narayan Bhamidipati. 2015.
“Hate Speech Detection with Comment Embeddings.” In Proceedings of the 24th International Conference
on World Wide Web, 29–30. ACM.

Gagliardone, Iginio, Danit Gal, Thiago Alves, and Gabriela Martinez. 2015. Countering Online Hate Speech. UNESCO
Publishing.
https://www.google.com/books?hl=en&lr=&id=WAVgCgAAQBAJ&oi=fnd&pg=PA3&dq=online+hate+spee
ch+unesco&ots=TaamaoJQVB&sig=xUFAShQSkdkdHtMImSPL50myDRE.

Gambäck, Björn, and Utpal Kumar Sikdar. 2017. “Using Convolutional Neural Networks to Classify Hate-Speech.” In
Proceedings of the First Workshop on Abusive Language Online, 85–90.

Op:Code

Open Code for Hate-free Communication

Co-Funded by the Rights, Equality and Citizenship
Programme of the European Union (2014 - 2020)

Gomez, Raul, Jaume Gibert, Lluis Gomez, and Dimosthenis Karatzas. 2019. “Exploring Hate Speech Detection in
Multimodal Publications.” ArXiv Preprint ArXiv:1910.03814.

Meza, Radu Mihai, Hanna-Orsolya Vincze, and Andreea Mogos. 2018. “Targets of Online Hate Speech in Context.”
Intersections 4 (4).

Nobata, Chikashi, Joel Tetreault, Achint Thomas, Yashar Mehdad, and Yi Chang. 2016. “Abusive Language
Detection in Online User Content.” In Proceedings of the 25th International Conference on World Wide
Web, 145–153.

Orasan, Constantin. 2018. “Aggressive Language Identification Using Word Embeddings and Sentiment Features.”
In . Association for Computational Linguistics.

Park, Ji Ho, and Pascale Fung. 2017. “One-Step and Two-Step Classification for Abusive Language Detection on
Twitter.” ArXiv Preprint ArXiv:1706.01206.

Pereira-Kohatsu, Juan Carlos, Lara Quijano-Sánchez, Federico Liberatore, and Miguel Camacho-Collados. 2019.
“Detecting and Monitoring Hate Speech in Twitter.” Sensors 19 (21): 4654.

Salminen, Joni, Hind Almerekhi, Milica Milenković, Soon-gyo Jung, Jisun An, Haewoon Kwak, and Bernard J. Jansen.
2018. “Anatomy of Online Hate: Developing a Taxonomy and Machine Learning Models for Identifying and
Classifying Hate in Online News Media.” In Twelfth International AAAI Conference on Web and Social
Media.

Schmidt, Anna, and Michael Wiegand. 2017. “A Survey on Hate Speech Detection Using Natural Language
Processing.” In Proceedings of the Fifth International Workshop on Natural Language Processing for Social
Media, 1–10.

Silva, Leandro, Mainack Mondal, Denzil Correa, Fabrício Benevenuto, and Ingmar Weber. 2016. “Analyzing the
Targets of Hate in Online Social Media.” In Tenth International AAAI Conference on Web and Social Media.

Waseem, Zeerak. 2016. “Are You a Racist or Am i Seeing Things? Annotator Influence on Hate Speech Detection on
Twitter.” In Proceedings of the First Workshop on NLP and Computational Social Science, 138–142.

Zhang, Ziqi, David Robinson, and Jonathan Tepper. 2018. “Detecting Hate Speech on Twitter Using a Convolution-
Gru Based Deep Neural Network.” In European Semantic Web Conference, 745–760. Springer.

Zia, T., M. S. Akram, M. S. Nawaz, B. Shahzad, A. M. Abdullatif, R. U. Mustafa, and M. I. Lali. 2016. “Identification of
Hatred Speeches on Twitter.” In Proceedings of 52nd The IRES International Conference, 27–32.

Suryatej Reddy Vyalla, Vishaal Udandarao, Tanmoy Chakraborty “Memeify: A Large-Scale Meme Generation
System” 1-5.
Gilbert Tranner. “Introduction to Uber’s Ludwig” https://gilberttanner.com/blog/introduction-to-ubers-

ludwig

https://gilberttanner.com/blog/introduction-to-ubers-ludwig
https://gilberttanner.com/blog/introduction-to-ubers-ludwig

